

Acidity of Hyd	drocarbons
In general, hydro excedingly v	
Compound	p <i>K</i> _a
HF	3.2
H₂O	16
NH ₃	36
H ₂ C=CH ₂	45
CH ₄	60

Preparation of Various Alkynes by alkylation reactions with Acetylide or Terminal Alkynes

$$R-C \equiv C-R' \qquad \xrightarrow{H_2, Pd/BaSO_4} CH_3OH \qquad R C \equiv C \qquad H'$$
quinoline
(Lindlar's catalyst)

Metal-Ammonia Reduction
of Alkynes

Alkynes → trans-Alkenes

Problem

Suggest an efficient syntheses of (E)- and (Z)-2-heptene from propyne and any necessary organic or inorganic reagents.

Addition of Hydrogen Halides to Alkynes

Two Molar Equivalents of Hydrogen Halide

CH₃CH₂C≡CCH₂CH₃

2 HF

CH₃CH₂—C—C—CH₂CH₃

H F

(76%)

Addition of Halogens to Alkynes

synthesis
$$CH_3CH_2C = CH \xrightarrow{\textbf{1. NaNH}_2} CH_3CH_2C = CCH_2CH_3 \xrightarrow{\textbf{H}_2\textbf{O}} CH_3CH_2CCH_2CH_2CH_3$$

synthesis

$$C = CH \xrightarrow{H_2/\text{Lindlar's} \atop \text{or Na/NH}_3(\text{Iiq})} CH = CH_2 \xrightarrow{1.8 \text{H}_3} \xrightarrow{2.\text{HO'}, \text{H}_2\text{O}_2, \text{H}_2\text{O}} -CH_2\text{CH}_2\text{OH}$$